首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   70篇
  国内免费   74篇
化学   717篇
晶体学   4篇
力学   46篇
综合类   25篇
数学   97篇
物理学   230篇
  2023年   111篇
  2022年   42篇
  2021年   47篇
  2020年   85篇
  2019年   49篇
  2018年   32篇
  2017年   58篇
  2016年   51篇
  2015年   54篇
  2014年   47篇
  2013年   54篇
  2012年   65篇
  2011年   52篇
  2010年   43篇
  2009年   63篇
  2008年   20篇
  2007年   33篇
  2006年   37篇
  2005年   21篇
  2004年   13篇
  2003年   20篇
  2002年   18篇
  2001年   29篇
  2000年   8篇
  1999年   31篇
  1998年   17篇
  1997年   16篇
  1986年   1篇
  1959年   2篇
排序方式: 共有1119条查询结果,搜索用时 171 毫秒
71.
Passive noise control devices for jet flows, such as chevron nozzles, have been studied for a long time due to their large application in turbofan engines. The main purpose of their usage is the reduction of low-frequency noise generation and thus decreasing the noise perceived at the far field. This work is a numerical study of acoustic noise generated by jet flow operating at Mach number 0.9 and Reynolds number 1.38 × 106, considering two chevron nozzle geometries that differ from each other by the penetration angle into the flow. The main aim was to demonstrate that Reynolds averaged Navier Stokes (RANS)-based methods are reliable means to obtain acoustical noise predictions for the industry with a considerably low computational cost. In order to achieve this objective, computational fluid dynamics (CFD) RANS simulations were performed with a cubic k-ɛ model and the acoustic noise spectrum for different angles of radiation was obtained via the Lighthill ray-tracing (LRT) method. The numerical results for the acoustic and flow fields were seen to be in reasonable agreement with the experimental data, suggesting that this methodology can be used as a fast and useful option to predict acoustic noise of jet flows from chevron nozzles.  相似文献   
72.

The influence of three polymer dispersions [styrene–butadiene copolymer (SB), styrene–acrylic ester copolymer (SA) and polyacrylic ester (PA)] on the hydration of calcium sulfoaluminate (CSA) cement within 72 h was investigated by using isothermal conduction calorimetry, X-ray diffraction analysis and thermal gravimetric analysis. The results indicate that these three polymer dispersions perform different influences on the hydration heat flow of CSA cement during different periods, they all postpone the occurrence time of the maxima peaks, and its extent is mainly dependent on the addition amount. Polymer dispersions manifest great retardation on the initial hydration of CSA cement, and the effect is much more significant within 1 h. In this stage, the generation of ettringite is strongly delayed; however, the formation of ettringite is accelerated by these polymer dispersions at and after 2 h. Among these three polymer dispersions, PA demonstrates the highest acceleration effect on the hydration degree.

  相似文献   
73.
《中国化学快报》2020,31(7):1757-1767
Recently, increasing attention has been paid on extending the π-conjugation structures of viologens (1,1′-disubstituted-4,4′-bipyridylium salts) by incorporating planar aromatic units into the bipyridinium backbones. Various viologen derivatives with extended π-conjugation structures have been synthesized, including the N-termini aromatic substituted viologens, the extended π-conjugated viologens (denoted as ECVs) as well as the π-conjugated oligomeric viologens (denoted as COVs). These compounds typically exhibit interesting properties distinguished from those of an isolated viologen unit, which make them as new class of electron deficient supra-/molecular building blocks in supramolecular chemistry and materials science. In this review, we would like to highlight the recent advances of viologen derivatives with extended π-conjugation structures in versatile applications ranging from electrochromic and energy storage materials, the ECV/COV-based supramolecular self-assembly systems including the linear supramolecular polymers and 2D/3D supramolecular organic frameworks (SOFs), to the viologen-based covalent organic frameworks (COFs)/networks. We hope this review will serve as an in-time summary worthy of referring, more importantly, to provide inspiration in the rational design of novel molecules with unexplored properties and functions.  相似文献   
74.
《中国化学快报》2020,31(7):1997-2002
Nonaqueous Li–O2 batteries attract attention for their theoretical specific energy density. However, due to the difficulty of decomposition of Li2O2, Li–O2 batteries have high charge overpotential and poor cycling life. So all kinds of catalysts have been studied on the cathode. Compared to heterogeneous solid catalysts, soluble catalysts achieve faster and more effective transport of electrons by reversible redox pairs. Here, we first report ruthenocene (Ruc) as a mobile redox mediator in a Li–O2 battery. 0.01 mol/L Ruc in the electrolyte effectively reduces the charging voltage by 610 mV. Additionally, Ruc greatly increases the cycling life by four-fold (up to 83 cycles) with a simple ketjen black (KB) cathode. The results of SEM, XPS and XRD confirm that less discharge product residue accumulated after recharge. To verify the reaction mechanisms of the mediator, free energy profiles of the possible reaction pathways based on DFT are provided.  相似文献   
75.
Ultralight flexible polymers enable promising application in many fields but are often hindered by low reusability with fatigue failure, weak mechanical stability and low temperature resistance. Here, superelastic polyimide nanofiber aerogels (PNFAs) with high hydrophobicity have been prepared by utilizing the polyamic acid (PAA) nanofibers to construct a continuous and isotropic fibrous architecture. “Fiber-bonding” effect is designed to endow the PNFAs with the structure-derived superelasticity. The results demonstrate that the PNFAs possess ultralight densities (9.7–19.1 mg cm−3), excellent absorption capacity (58 times for n-hexane), broad working-temperature range, high resilience after 1000 fatigue cycles at 60% strain, and outstanding thermal insulation performance. Analysis of 50 absorption-harvesting cycle tests reveals that these highly hydrophobic PNFAs possess an ultrahigh reusability. The compressed PNFAs return to their original shape after they are distilled to recover the absorbed pollutants. These PNFAs with high absorption capacity and robust mechanical stability are promising to be applied in a variety of industrial and environmental applications.  相似文献   
76.
采用沉淀法制备了ZrO2,CeO2和Ce0.7Zr0.3O2载体,并用浸渍法制备负载型Pt催化剂。考察了500和900℃焙烧催化剂的丙烷完全氧化性能和水汽对丙烷氧化反应的影响。对于500℃焙烧的催化剂,催化剂的丙烷氧化活性顺序为:Pt/ZrO2-500>Pt/CeO2-500>Pt/Ce0.7Zr0.3O2-500;而经900℃焙烧的催化剂活性顺序为:Pt/ZrO2-900>Pt/Ce0.7Zr0.3O2-900>Pt/CeO2-900。反应气氛中水汽的存在对两种Pt/ZrO2催化剂的活性均有抑制作用(T50温度均提高了10~15℃);而对于Pt/CeO2-500催化剂有抑制作用(T50温度提高10℃),但对Pt/CeO2-900催化剂活性有促进作用(T50温度下降25℃);对于两种Pt/Ce0.7Zr0.3O2催化剂活性具有促进作用(T50温度均下降5~25℃)。表征结果表明催化剂的活性与其表面Pt物种价态密切相关,催化剂表面上Pt0物种有利于活性的提高。Pt/Ce0.7Zr0.3O2-500催化剂中只含有氧化态Pt物种(Pt^2+),而Pt/Ce0.7Zr0.3O2-900催化剂中则含有部分金属态Pt物种,因此其活性高于Pt/Ce0.7Zr0.3O2-500催化剂。  相似文献   
77.
Biological ion channels and ion pumps with sub-nanometer sizes modulate ion transport in response to external stimuli. Realizing such functions with sub-nanometer solid-state nanopores has been an important topic with wide practical applications. Herein, we demonstrate a biomimetic photoresponsive ion channel and photodriven ion pump using a porphyrin-based metal–organic framework membrane with pore sizes comparable to hydrated ions. We show that the molecular-size pores enable precise and robust optoelectronic ion transport modulation in a broad range of concentrations, unparalleled with conventional solid-state nanopores. Upon decoration with platinum nanoparticles to form a Schottky barrier photodiode, photovoltage across the membrane is generated with “uphill” ion transport from low concentration to high concentration. These results may spark applications in energy conversion, ion sieving, and artificial photosynthesis.  相似文献   
78.
In this article, the hydrodynamical instability initiation criterion in two-phase stratified flow in a horizontal duct is examined. The nonlinear two mass and two momentum conservation equations are used for numerical simulation using the two-phase two-fluid model. The model is solved using the Finite Volume and Spectral Methods, respectively. This paper is the first to utilize the Spectral Method for the simulation of two-phase flow problems. Using the Spectral Method, we show that the numerical error and CPU time decreases noticeably relative to the Finite Volume Method. The well established Kelvin–Helmholtz (K–H) instability is selected for the test case and comparison. The results taken from each set of computer codes developed in this paper are highly compatible with the theoretical and experimental results of previous researchers who used alternative numerical methods. The results obtained from the Spectral Method in comparison with the results of other well known codes exhibit greater consistency with prior analytical results, but with much smaller computer calculation time. The step taken in the present study shows a positive progress in two-phase two-fluid model numerical solution with hydrostatic assumption. It is recommended the research to be continued with two-phase two-fluid model but with hydrodynamical assumption.  相似文献   
79.
The multicomponent reactions of aldehydes, electron deficient alkynes and amines have been successfully performed to yield a number of symmetrical 2,6‐unsubstituted 1,4‐dihydropyridines (1,4‐DHPs). This method has been found generally applicable for the synthesis of both N‐substituted and N‐unsubstituted 1,4‐DHPs by employing secondary amine to activate the alkyne component via enaminoester intermediates. The present method runs through an enamine type activation, which is different from the known approach employing AcOH as solvent.  相似文献   
80.
A graft-polymerization process with atomized lauryl methacrylate as monomer is used to fabricate fluorine-less and asymmetrically superhydrophobic cotton fabrics. The polymers synthesized in the process can form nanoscale hierarchical structures on the cotton surface, and the surface morphology can be controlled by choosing a suitable solvent or by varying the feeding quantity of the monomer mist stream. After applying the surface modification to cotton fabrics, an asymmetrically superhydrophobic surface is achieved without any additional nanosized particles, and the solvent damages on the cotton fabrics are controllable at a very low level. Surface characterization reveals that the modified side of the cotton fabric has laundering-durable and mechanically stable superhydrophobicity with a water contact angle of more than 150°, whereas the opposite inherits the hydrophilic property of pristine cotton fabric. The modified cotton fabrics are found to have medium-level water-absorbing ability between pristine cotton and PET fabrics, as well as good vapor transmissibility similar to pristine cotton fabric. These properties are of great significance in textile and medical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号